α-CHLOROALKYLLITHIUM SULFONIC ACID DERIVATIVES

W. E. Truce and L. W. Christensen Department of Chemistry

Purdue University, Lafayette, Indiana
(Received in USA 16 May 1969; received in UK for publication 27 June 1969)
Simple α-haloalkyllithiums have been shown to exist as stable entities at low temperatures
(1-5). However little data have been accumulated on α-haloalkyllithiums bearing a carbanionstabilizing group on the α-carbon. Our interest in the synthetic utility of sulfur-stabilized
carbanions (6-8), coupled with a recent communication on α-halolithium sulfoxides (9) prompts
us to report the first preparation and characterization of α-chloroalkyllithium sulfonic acid
derivatives.

C1CH₂SO₂-Y +
$$\underline{n}$$
-BuLi \xrightarrow{THF} \xrightarrow{C} LiCHClSO₂-Y a) Y=N O; b) Y=OCH₂C(CH₃)₃
II

 $\underline{\alpha}$ -Metallation of a $\underline{\alpha}$ -halosulfonamide or sulfonate ester with one equivalent of \underline{n} -butyl-lithium effects an excellent conversion to the corresponding $\underline{\alpha}$ -halolithium compound. Characterization of IIa was achieved by its conversion, in high yield, to the corresponding $\underline{\beta}$ -hydroxy- $\underline{\alpha}$ -chlorosulfonamide (III) when treated with acetone (Table I).

Acylation and nitration (7) of IIa can also be achieved in good to moderate yields (Table I).

LICHC1SO₂N O
$$\xrightarrow{\text{PhCO}_2\text{Et}}$$
 O CCHC1SO₂N O IV NO₂CHC1SO₂N O V

The metallated ester IIb was quantitatively alkylated with methyl iodide (8).

$$\begin{array}{c} \text{c1} \\ \text{c1chc1so}_3\text{cH}_2\text{c(cH}_3)_3 + \text{cH}_3\text{I} & \xrightarrow{\text{THF},-78}^{\circ} \text{cH}_3\text{cHso}_3\text{cH}_2\text{c(cH}_3)_3 \\ \end{array}$$

All products were identified from ir, nmr and mass spectra, and gave satisfactory elemental analyses and molecular weights.)

		_	_
T'Δ	HI	F	Т

Compound	mp(bp)	Yield %	NMR: Sa
III.	106-108 ⁰	96	1.49(2s,6); 3.48(m,5); 3.71(m,4); 4.67(s,1);
IV.	106 - 107 ⁰	80	3.64(m,8); 6.25(s,1); 8.0-7.5(m,5)
v.	97-98.5°	23 ^b	3.51(m,4); 3.75(m,4); 6.58(s,1)
VI.	(66-67°/1.2)	94 ^C	1.00(s,9); 1.89(d,3) 4.16(s,2); 4.95(q,1)

- (a) CDCl₃ Solvent, TMS=0: (b) Reaction temperature -35°:
- (c) Quantitative conversion by nmr.

Initial observations indicate that both IIa and IIb are stable to at least -55° , above which temperature decomposition occurs. Further studies are in progress to characterize possible $\underline{\alpha}$ -sulfonyl carbene formation via this decomposition and to investigate the reactions of other stabilized α -haloalkyllithium compounds.

Acknowledgement: The authors are grateful to the Public Health Service for financial support of this work under Research Grant No. CA-04536-10 from the National Cancer Institute.

REFERFNCES

- 1. D. F. Hoeg, D. I. Lusk, and A. L. Crumbliss, <u>J. Am. Chem. Soc.</u>, <u>87</u>, 4147 (1965).
- 2. W. T. Miller and D. M. Whalen, <u>J. Am. Chem. Soc.</u>, <u>86</u>, 2089 (1964).
- 3. G. Kobrich, K. Flory, and W. Drischel, Angew. Chem., 76, 536 (1964).
- 4. D. F. Hoeg and D. I. Lusk, <u>J. Organometal. Chem.</u>, <u>5</u>, 1 (1966).
- 5. G. L. Closs and L. E. Closs, <u>J. Amer. Chem. Soc.</u>, <u>81</u>, 4996 (1959).
- 6. W. E. Truce, C. R. Robbins, and E. M. Krieder, <u>J. Am. Chem. Soc.</u>, <u>88</u>, 4027 (1966).
- 7. W. E. Truce and L. W. Christensen, Tetrahedron, 25, 181 (1969).
- 8. W. E. Truce and D. J. Vrencur, <u>Can. J. Chem.</u>, <u>47</u>, 860 (1969).
- 9. T. Durst, <u>J. Am. Chem. Soc.</u>, <u>91</u>, 1034 (1969).